* aGrUM * Learning algorithm `gum::learning::MIIC` can use the weighted databases. * Internal improvements for `act` tool, `cmake` and compilers (`clang`). * pyAgrum * New visualisation for `gum::DiscretizedVariable` + new config to select this visualisation. * `pyAgrum.BNLearner` can use now the weighted databases for all learning algorithms. * Documentation improvements. * `pyAgrum.lib.bn2roc` * adding new functions `get{ROC|PR}points()`. * accepting `pandas.DataFrame` as data source (`datasrc`). * adding Fbeta (beta!=1) scores to bn2roc. * adding F-Beta threshold on ROC and PR curves. * `bn2roc` functions now force many parameters to be keyword-arguments in order to prevent the risk of mixing arguments. * adding new functions `anim{ROC|PR}`. * `pyAgrum.skbn.Discretizer` can propose a set of labels (that includes the labels from the database) when `"NoDiscretization"` is selected. (see tutorial `52-Classifier_Discretizer`).