-
sunxi-late-for-4.25738563b · ·
Allwinner late changes for 4.2 A bunch of defconfig changes, and some patches to make the Allwinner H3 and A33 boot properly.
-
-
drm-intel-next-2015-07-03a3d1d001 · ·
- dsi improvements (Gaurav) - bxt ddi dpll hw state readout (Imre) - chv dvfs support and overall wm improvements for both vlv and chv (Ville) - ppgtt polish from Mika and Michel - cdclk support for bxt (Bob Pauwe) - make frontbuffer tracking more precise - OLR removal (John Harrison) - per-ctx WA batch buffer support (Arun Siluvery) - remvoe KMS Kconfig option (Chris) - more hpd handling refactoring from Jani - use atomic states throughout modeset code and integrate with atomic plane update (Maarten)
-
iommu-fixes-v4.27a5a566e · ·
IOMMU Fixes for Linux v4.2-rc0 Four fixes have queued up to fix regressions introduced after v4.1: * Don't fail IOMMU driver initialization when the add_device call-back returns -ENODEV, as that just means that the device is not translated by the IOMMU. This is pretty common on ARM. * Two fixes for the ARM-SMMU driver for a wrong feature check and to remove a redundant NULL check. * A fix for the AMD IOMMU driver to fix a boot panic on systems where the BIOS requests Unity Mappings in the IVRS table.
-
-
kvm-4.2-1f2ae45ed · ·
The bulk of the changes here is for x86. And for once it's not for silicon that no one owns: these are really new features for everyone. * ARM: several features are in progress but missed the 4.2 deadline. So here is just a smattering of bug fixes, plus enabling the VFIO integration. * s390: Some fixes/refactorings/optimizations, plus support for 2GB pages. * x86: 1) host and guest support for marking kvmclock as a stable scheduler clock. 2) support for write combining. 3) support for system management mode, needed for secure boot in guests. 4) a bunch of cleanups required for 2+3. 5) support for virtualized performance counters on AMD; 6) legacy PCI device assignment is deprecated and defaults to "n" in Kconfig; VFIO replaces it. On top of this there are also bug fixes and eager FPU context loading for FPU-heavy guests. * Common code: Support for multiple address spaces; for now it is used only for x86 SMM but the s390 folks also have plans. There are some x86 conflicts, one with the rc8 pull request and the rest with Ingo's FPU rework.
-
iommu-updates-v4.25ffde2f6 · ·
IOMMU Updates for Linux v4.2 This time with bigger changes than usual: * A new IOMMU driver for the ARM SMMUv3. This IOMMU is pretty different from SMMUv1 and v2 in that it is configured through in-memory structures and not through the MMIO register region. The ARM SMMUv3 also supports IO demand paging for PCI devices with PRI/PASID capabilities, but this is not implemented in the driver yet. * Lots of cleanups and device-tree support for the Exynos IOMMU driver. This is part of the effort to bring Exynos DRM support upstream. * Introduction of default domains into the IOMMU core code. The rationale behind this is to move functionalily out of the IOMMU drivers to common code to get to a unified behavior between different drivers. The patches here introduce a default domain for iommu-groups (isolation groups). A device will now always be attached to a domain, either the default domain or another domain handled by the device driver. The IOMMU drivers have to be modified to make use of that feature. So long the AMD IOMMU driver is converted, with others to follow. * Patches for the Intel VT-d drvier to fix DMAR faults that happen when a kdump kernel boots. When the kdump kernel boots it re-initializes the IOMMU hardware, which destroys all mappings from the crashed kernel. As this happens before the endpoint devices are re-initialized, any in-flight DMA causes a DMAR fault. These faults cause PCI master aborts, which some devices can't handle properly and go into an undefined state, so that the device driver in the kdump kernel fails to initialize them and the dump fails. This is now fixed by copying over the mapping structures (only context tables and interrupt remapping tables) from the old kernel and keep the old mappings in place until the device driver of the new kernel takes over. This emulates the the behavior without an IOMMU to the best degree possible. * A couple of other small fixes and cleanups.
-